The following documentation gives a description of all input variables and the consequent preparation of the output variables according to the manual for the preparation of comparative fertility and union histories. All problem cases as well as the treatment of these cases are described in detail. At the end of each module a summary of the main findings is displayed (in red).

Missing values are coded:
.a unknown
.b does not apply
.c unavailable in survey

Source: GGS first wave, GGS_Wave1_Germany_V.4.0.dta

Interview dates Germany February to May 2005

June 2014: Corrections in the variables to leaving home histories of children (KID_L, KID_LY, KID_LM)—changes in missing values of KID_Dx

October 2015: Please note that the partnership histories were modified in October 2015. More precisely, we changed the sorting of the variable UNION_$(Union order). Prior to that date, we had sorted the unions by start year of the union. This involved that unions which start dates were missing were always listed as last unions. In the modified version, we sorted the partnerships no longer by relying on the start year of the union, but by relying on the order of the union as they appear in the original dataset. For Germany it affects ca. 92 cases.

In connection with this modification, some smaller consistency changes were made to the data. In particular, we recoded the following constellations:

• Events (Union, Marriage, Separation, Divorce) before age 12 of respondent
• Event before age 12 of partner
• Negative difference between partnership date and marriage date
• Negative difference between separation date and union or marriage date and negative difference between divorce date and union or marriage date
• Sucessive partnerships mar-mar[\(n-1\)]<=0 or par-par[\(n-1\)]<=0
• Differences between separation date and next partnership date sep>par[\(n+1\)]

All modifications made October 2015 are described in the updated documentation.

1. Part Basic Information

<table>
<thead>
<tr>
<th>RESPID:</th>
<th>ID number to be assigned at merging</th>
<th>LEAVE BLANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARID:</td>
<td>ID number from raw data (original ID number)</td>
<td>used: arid</td>
</tr>
<tr>
<td></td>
<td>10017 respondents</td>
<td></td>
</tr>
<tr>
<td>COUNTRY:</td>
<td>Country and survey</td>
<td>used: acountry</td>
</tr>
<tr>
<td></td>
<td>COUNTRY: code: 2761: Germany GGS</td>
<td></td>
</tr>
<tr>
<td>MONTH_S:</td>
<td>Month of survey</td>
<td>used: amonth</td>
</tr>
<tr>
<td></td>
<td>june</td>
<td></td>
</tr>
<tr>
<td>IMONTH_S:</td>
<td>Month of survey, including imputed dates</td>
<td></td>
</tr>
<tr>
<td>YEAR_S:</td>
<td>Year of survey</td>
<td>used: ayear</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>SEX:</td>
<td>Sex of the respondent</td>
<td>used: ahg4_1</td>
</tr>
<tr>
<td></td>
<td>No missing cases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sex structure of the German respondents: Male: 4610 and Female: 5407</td>
<td></td>
</tr>
<tr>
<td>BORN_Y:</td>
<td>Year of birth of respondent</td>
<td>used: ahg6y_1</td>
</tr>
<tr>
<td></td>
<td>1920-1988: 50 missing cases</td>
<td></td>
</tr>
<tr>
<td>BORN_M:</td>
<td>Month of birth of respondent</td>
<td>used: ahg6m_1</td>
</tr>
<tr>
<td></td>
<td>86 missing cases</td>
<td></td>
</tr>
<tr>
<td>IBORN_M:</td>
<td>Month of birth of respondent</td>
<td>used: BORN_M</td>
</tr>
<tr>
<td></td>
<td>including imputed months</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harmonized: random variable between 1-12</td>
<td></td>
</tr>
</tbody>
</table>

2. Part LEAVING HOME

LEAVE_1:	Indicator of whether left home	
	used: a5117a	
	a5116m/y	
	a5117a=1 go to a5117bm/y	
Definition:
* Respondent did not leave home (0) if: a parent lives in the household and respondent never lived separately from parents (a5117a=2)
* Respondent left home (1) if: there is no parent in household (GRID=0) or there is a parent in household (GRID=1) and respondent ever left home (a5117a=1)
Harmonized: code 0: 332 / code 1: 9685

LEAVE_Y1: Year of first time leaving home used: a5116y and a5117by

Filter: .b if LEAVE_1==0 (332)
Missing cases: 1299

LEAVE_M1: Month of first time leaving home used: a5116m and a5117bm
1580 missing cases

ILEAVE_M1: Month of first time leaving home and imputed months: used: LEAVE_M1
Harmonized: random variables according to manual

3. Part UNIONS AND DISSOLUTION ($=$order of union)

UNINUM: Total number of unions used: UNION_1 to _6
Syntax:
```
forvalues x=1/6 {
  replace UNINUM=UNINUM+1 if UNION_`x'>0
}
```

UNINUM:
- 0: 2407
- 1: 6484
- 2: 923
- 3: 163
- 4: 35
- 5: 3
- 6: 2

UNION_$: UNION order

For the chapters union /marriage and divorce/ and a part of partners characteristics an extern reshaping program was used, which includes partnership histories and questions to the current partner

Definition (Union_1 to UNION_x):
- an union exists if there is a partner (hh_rast* code 1) (current partner) or in partnership histories if there is an answer in at least one of the questions to partnership histories

UNION_1: 7610 .d 214
UNION_2: 1126 .d 119
UNION_3: 203
UNION_4: 40
UNION_5: 5
UNION_6: 2

UNION_Y$: Year of start union used: a301y and a334y_

Filter: UNION_Yx=.b if UNION_x==0

UNION_Y1 missing values: 358
UNION_Y2 missing values: 110
UNION_Y3 missing values: 27
UNION_Y4 missing values: 7
UNION_Y5 missing values: 3
UNION_Y6 missing values: 2

TRANSFORMATIONS
replace a301y=.a if ARID==32009 | ARID==41386 | ARID==30125 | ARID==30197 | ARID==32009 | ARID==32870 | ARID==40977 | ARID==41386 | ARID==42334 | ARID==42874 | ARID==43444 | ARID==44987 | ARID==45351 | ARID==10361 | ARID==30364
replace a302by=.a if ARID==20379 | ARID==30125 | ARID==32870 | ARID==44987 | ARID==45351 | ARID==20379 | ARID==10361
replace a301y=.a if ARID==30111 | ARID==31741 | ARID==10171 | ARID==41723 | ARID==42367 | ARID==44010
replace a301m=10 if ARID==10298 | ARID==31100 | ARID==44249
replace a301y=.a if ARID==10429 | ARID==20275 | ARID==30110 | ARID==30192 | ARID==30551 | ARID==30770 | ARID==30803 | ARID==31279 | ARID==31521 | ARID==32510 | ARID==45175
replace a301y=.a if ARID==33631 | ARID==40304 | ARID==40313 | ARID==40397 | ARID==40570 | ARID==41108 | ARID==41499 | ARID==41835 | ARID==41920 | ARID==42804 | ARID==43696 | ARID==44148 | ARID==44325 | ARID==44876 | ARID==44995 | ARID==45175
replace a301m=7 if ARID==20231 | ARID==44331
replace a301m=8 if ARID==30031 | ARID==43914 | ARID==45048
replace a301m=9 if ARID==30044 | ARID==44243
replace a301m=11 if ARID==33204 | ARID==43546
replace a301m=5 if ARID==42329

replace a334y_1=.a if ARID==100 | ARID==10300 | ARID==43565 | ARID==44333 | ARID==45537
replace a334y_2=.a if ARID==10300
replace a344y_1=.a if ARID==10300 | ARID==45537 | ARID==31553 | ARID==33099 | ARID==394 | ARID==31823 | ARID==40787 | ARID==41489 | ARID==20072 | ARID==32021 | ARID==40367
replace a344y_2=.a if ARID==10300 | ARID==31553
replace a335y_1=.a if ARID==43565 | ARID==44333 | ARID==33399 | ARID==31823 | ARID==40583
replace a336y_1=.a if ARID==172 | ARID==10364 | ARID==43921 | ARID==33099
replace a344y_3=.a if ARID==30858 | ARID==32270
replace a349y_2=.a if ARID==43586
replace a335y_3=.a if ARID==32270
replace a349y_3=.a if ARID==32270
*last partnership in histories and actual are the same
replace a334m_2=. if ARID==30154 | ARID==30180 | ARID==30255 |
 ARID==30818 | ARID==31139 | ARID==31949 | ARID==44794 | ARID==43045 |
 ARID==41137 | ARID==40645 | ARID==33346 | ARID==32219 | ARID==31949 |
 ARID==31897
replace a334y_2=. if ARID==30154 | ARID==30180 | ARID==30255 |
 ARID==30818 | ARID==31139 | ARID==31949 | ARID==44794 | ARID==43045 |
 ARID==41137 | ARID==40645 | ARID==33346 | ARID==32219 | ARID==31949 |
 ARID==31897
replace a335a_2=. if ARID==30154 | ARID==30180 | ARID==30255 |
 ARID==30818 | ARID==31139 | ARID==31949 | ARID==44794 | ARID==43045 |
 ARID==41137 | ARID==40645 | ARID==33346 | ARID==32219 | ARID==31949 |
 ARID==31897
replace a336m_2=. if ARID==30154 | ARID==30180 | ARID==30255 |
 ARID==30818 | ARID==31139 | ARID==31949 | ARID==44794 | ARID==43045 |
 ARID==41137 | ARID==40645 | ARID==33346 | ARID==32219 | ARID==31949 |
 ARID==31897
replace a336y_2=. if ARID==30154 | ARID==30180 | ARID==30255 |
 ARID==30818 | ARID==31139 | ARID==31949 | ARID==44794 | ARID==43045 |
 ARID==41137 | ARID==40645 | ARID==33346 | ARID==32219 | ARID==31949 |
 ARID==31897
replace a338_2=. if ARID==30154 | ARID==30180 | ARID==30255 |
 ARID==30818 | ARID==31139 | ARID==31949 | ARID==44794 | ARID==43045 |
 ARID==41137 | ARID==40645 | ARID==33346 | ARID==32219 | ARID==31949 |
 ARID==31897
replace a343_2=. if ARID==30154 | ARID==30180 | ARID==30255 |
 ARID==30818 | ARID==31139 | ARID==31949 | ARID==44794 | ARID==43045 |
 ARID==41137 | ARID==40645 | ARID==33346 | ARID==32219 | ARID==31949 |
 ARID==31897
replace a344m_2=. if ARID==30154 | ARID==30180 | ARID==30255 |
 ARID==30818 | ARID==31139 | ARID==31949 | ARID==44794 | ARID==43045 |
 ARID==41137 | ARID==40645 | ARID==33346 | ARID==32219 | ARID==31949 |
 ARID==31897
replace a344y_2=. if ARID==30154 | ARID==30180 | ARID==30255 |
 ARID==30818 | ARID==31139 | ARID==31949 | ARID==44794 | ARID==43045 |
 ARID==41137 | ARID==40645 | ARID==33346 | ARID==32219 | ARID==31949 |
 ARID==31897
replace a334m_4=. if ARID==31000
replace a334y_4=. if ARID==31000
replace a335a_4=. if ARID==31000
replace a336m_4=. if ARID==31000
replace a336y_4=. if ARID==31000
replace a338_4=. if ARID==31000
replace a343_4=. if ARID==31000
replace a344m_4=. if ARID==31000
replace a344y_4=. if ARID==31000
replace a334m_5=. if ARID==32645
replace a334y_5=. if ARID==32645
replace a335a_5=. if ARID==32645
replace a336m_5=. if ARID==32645
replace a336y_5=. if ARID==32645
replace a338_5=. if ARID==32645
replace a343_5=. if ARID==32645
replace a344m_5=. if ARID==32645
replace a344y_5=. if ARID==32645
replace a334m_3=. if ARID==32225
replace a334y_3=. if ARID==32225
replace a335a_3=. if ARID==32225
replace a336m_3=. if ARID==32225
replace a336y_3=. if ARID==32225
replace a338_3=. if ARID==32225
replace a343_3=. if ARID==32225
replace a344m_3=. if ARID==32225
replace a344y_3=. if ARID==32225
replace a335m_3=. if ARID==32225
replace a335y_3=. if ARID==32225
replace a334y_2=.a if ARID==30275 | ARID==30711
replace a335y_2=.a if ARID==30275 | ARID==43779
replace a334y_4=.a if ARID==43779
replace a335y_4=.a if ARID==43779
replace a334y_1=.a if ARID==32108
replace a334y_1=.a if ARID==32108
replace a335y_3=.a if ARID==43586
replace a334y_3=.a if ARID==43805
replace a334y_4=.a if ARID==43805
replace a334y_5=.a if ARID==43805
replace a334y_6=.a if ARID==43805
replace a334y_3=.a if ARID==43805
replace a334y_4=.a if ARID==43805
replace a334y_5=.a if ARID==43805
replace a334y_6=.a if ARID==43805
replace a334y_2=.a if ARID==375
replace a334m_2=5 if ARID==10275
replace a334m_2=12 if ARID==20181 | ARID==43382
replace a334y_2=.a if ARID==31170 | ARID==32573 | ARID==43388 |
ARID==43498 | ARID==45741
replace a334m_2=11 if ARID==31429
replace a334m_2=7 if ARID==32975
replace a334m_2=3 if ARID==42576
replace a334m_2=8 if ARID==44243

UNION_M$: Month of start UNION used: a301m and a334m_

Filter: UNION_Mx=.b if UNION_x==0

UNION_M1 missing values: 514
UNION_M2 missing values: 82
UNION_M3 missing values: 28
UNION_M4 missing values: 6
UNION_M5 missing values: 2
UNION_M6 missing values: 1
IUNION_M$: Month of start UNION used: IUNION_M$ and imputed months according to manual page 4 (random)

Filter: IUNION_Mx=.b if UNION_x==0

SEP_: Dissolution of UNION used: a343_ (only histories)

Filter: SEP_x=.b if UNION_x==0

⇒ in case of current partner: no separation

SEP_1 missing cases: 7
SEP_2 missing cases: 14
SEP_3 missing cases: 8

<table>
<thead>
<tr>
<th>Order of Union</th>
<th>Number of unions</th>
<th>number of separations</th>
<th>death of partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7610</td>
<td>1745</td>
<td>382</td>
</tr>
<tr>
<td>2</td>
<td>1126</td>
<td>381</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>203</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

SEP_Y$: Year of end of UNION used: a344_y_ (only histories)

Filter: SEP_Yx=.b if UNION_x==0

SEP_Y1 missing values: 504
SEP_Y2 missing values: 103
SEP_Y3 missing values: 33
SEP_Y4 missing values: 6
SEP_Y5 missing values: 2
SEP_Y6 missing values: 2

replace SEP_Y1=.a if (SEP_Y1<UNION_Y1 & UNION_Y1!=.a)

SEP_M$: Month of end of UNION used: a344m_ (histories only)

Filter: SEP_Mx=.b if UNION_x==0

SEP_M1 missing values: 525
SEP_M2 missing values: 112
SEP_M3 missing values: 31
SEP_M4 missing values: 5
SEP_M5 missing values: 1
SEP_M6 missing values: 1

ISEP_M$: Month of end of UNION and imputed months according to manual page 4 (random)
Filter: ISEP_Mx=.b if UNION_x==0
ISEP_Mx=.b if SEP_x==0

Summary: Some problems with dates of the union and the separation were found and some transformation had to be performed which are described in the chapter above.

4. Part MARRIAGE AND DIVORCE ($=order of union)

MARR_$_: Indicator of whether marriage took place and type of marriage
used: a302a and a335a

Filter: MARR_x=.b if UNION_x==0

MARR_1 missing values: 7
MARR_3 missing values: 1
MARR_5 missing values: 1
MARR_6 missing values: 1

<table>
<thead>
<tr>
<th>Order of Union</th>
<th>Number of unions</th>
<th>number of marriages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7610</td>
<td>6387</td>
</tr>
<tr>
<td>2</td>
<td>1126</td>
<td>663</td>
</tr>
<tr>
<td>3</td>
<td>203</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

MARR_Y$_: Year of marriage
used: a302by and a335y_

Filter: MARR_Yx=.b if UNION_x==0
MARR_Yx=.b if MARR_x==0

MARR_Y1 missing values: 193
MARR_Y2 missing values: 17
MARR_Y3 missing values: 5
MARR_Y4 missing values: 2
MARR_Y5 missing values: 1

MARR_M$_: Month of marriage
used: a302bm and a335m_

Filter: MARR_Mx=.b if UNION_x==0
MARR_Mx=.b if MARR_x==0

MARR_M1 missing values: 241
MARR_M2 missing values: 17
MARR_M3 missing values: 3
MARR_M4 missing values: 2
MARR_M5 missing values: 1
IMARR_M$: Month of marriage
and imputed months
according to manual page 4 (random)

Filter: IMARR_Mx=.b if UNION_x==0
IMARR_Mx=.b if MARR_x==0

DIV_: Indicator of whether divorce occurred
(only histories)

Filter: DIV_x=.b if UNION_x==0
DIV_x=.b if MARR_x==0
DIV_x=.d if f033000==2

DIV_1 missing values: 9
DIV_2 missing values: 5
DIV_3 missing values: 2
DIV_4 missing values: 1
DIV_5 missing values: 1

<table>
<thead>
<tr>
<th>Order of Union</th>
<th>Number of unions</th>
<th>Number of marriages</th>
<th>Number of divorces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7610</td>
<td>6387</td>
<td>946</td>
</tr>
<tr>
<td>2</td>
<td>1126</td>
<td>663</td>
<td>117</td>
</tr>
<tr>
<td>3</td>
<td>203</td>
<td>85</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DIV_Y$: Year of divorce

Filter: DIV_Yx=.b if UNION_x==0
DIV_Yx=.b if MARR_x==0
DIV_Yx=.b if DIV_X==0 or .d

DIV_Y1 missing values: 63
DIV_Y2 missing values: 15
DIV_Y3 missing values: 4
DIV_Y4 missing values: 2
DIV_Y5 missing values: 1

DIV_M$: Month of divorce

Filter: DIV_Mx=.b if UNION_x==0
DIV_Mx=.b if MARR_x==0
DIV_Mx=.b if DIV_x==0 or .d

DIV_M1 missing values: 87
DIV_M2 missing values: 19
DIV_M3 missing values: 3
DIV_M4 missing values: 2
DIV_M5 missing values: 1

IDIV_M$: Month of divorce
and imputed months
according to manual page 4 (random)
Filter:
IDIV_Mx=.b if UNION_x==0
IDIV_Mx=.b if MARR_x==0
IDIV_Mx=.b if DIV_x==0 or .d

Summary: Some problems with dates of the marriage were
found and some transformation had to be performed which are
described in the chapter above.

5. Part PARTNER`S CHARACTERISTICS ($=order of
union)

SEXP$_x$: Partner`s sex
used: ahg4_1 and a352a
Filter: SEXP_x=.b if UNION_x==0
SEXP_1: missing case: 17
SEXP_2: missing case: 3
SEXP_3: missing case: 1

<table>
<thead>
<tr>
<th>Partner</th>
<th>Number of unions</th>
<th>Number male</th>
<th>Number female</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7610</td>
<td>4182</td>
<td>3411</td>
</tr>
<tr>
<td>2</td>
<td>1126</td>
<td>653</td>
<td>470</td>
</tr>
<tr>
<td>3</td>
<td>203</td>
<td>99</td>
<td>103</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

YEARBIRP$_x$: Year of birth of partner
used: ahg6y_2 and a336y_
Filter: YEARBIRP_x=.b if UNION_x==0
YEARBIRP_1 missing cases: 320
YEARBIRP_2 missing cases: 75
YEARBIRP_3 missing cases: 22
YEARBIRP_4 missing cases: 4
YEARBIRP_5 missing case: 2
YEARBIRP_6 missing case: 2

MONBIRP$_x$: Month of birth of partner
used: ahg6m_2 and a336m_
Filter: MONBIRP_x=.b if UNION_x==0
MONBIRP_1 missing cases: 392
MONBIRP_2 missing cases: 82
MONBIRP_3 missing cases: 24
MONBIRP_4 missing cases: 6
MONBIRP_5 missing case: 2
MONBIRP_6 missing case: 2

IMONBIRP$_x$: Month of birth of partner
used: MONBIRP$_x$
and imputed months
according to manual page 4 (random)
Filter: IMONBIRP_x=.b if UNION_x==0

NUMCHP_\$: Number of children of partner at start of union$

used:
for current partner:
a) children of partner (household members): relation of household member to respondent: code 4: step child: my current partner’s child not adopted by me \(\text{ahg3_3 to ahg3_7} \)
b) non-resident stepchildren: a229_
c) for partnership histories: a338_
also: year of start of union (a301y) and year of birth of stepchild (a230y_ and ahg6y__3-ahg6y_7)

Problem: The question: When you started living together, how many children did your partner have? (a338)- exists only for partnership histories
-for current partnership it had to be created with help of the number of stepchildren, year of start of union and year of birth of stepchild

Definition:
* in the number of children of current partner are included:
* all stepchildren of respondent living at the moment of interview in household grid and were born before the start of the union
* all nonresident stepchildren at the time of interview – partners children born before partnership
* the number of partner’s children at start of a union in partnership history

NUMCHP_\$=.b if UNION_X==0

NUMCHP_1: missing values: 2245
NUMCHP_2: missing values: 119
NUMCHP_3: missing values: 1
NUMCHP_4: missing values: 17
NUMCHP_5: missing values: 2

NUMCLIV_\$: Number of children of partner lived with respondent

Problem: The question: How many of them (children of partner) lived with respondent do not exist in partnership histories in German GGS.

<table>
<thead>
<tr>
<th>Union</th>
<th>Number of unions</th>
<th>NUMCHP</th>
<th>NUMCLIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7610</td>
<td>1: 213 2: 81 3: 23 4: 3 5: 3 6: 1 7: 1</td>
<td>.c</td>
</tr>
<tr>
<td>2</td>
<td>1126</td>
<td>1: 162 2: 103 3: 32 4: 12 5: 2 6: 2</td>
<td>.c</td>
</tr>
<tr>
<td>3</td>
<td>203</td>
<td>1: 34</td>
<td>.c</td>
</tr>
</tbody>
</table>
Summary: The variable NUMCHP had to be created for the current partnership. The variable NUMCLIV is not included.

6. Part Birth histories (biological kids)

For the chapter "Birth histories" an extern reshaping program was used, which includes biological children in household and questions to the nonresident biological children.

To create the number of biological children (KID_1 to KID_x) the following definition was applied:

- A biological child exists in household if there is code 2 or 3 (biological child by current or previous partner) in the relationship to respondent(ahg3_) and a nonresident biological child exists if a213==1

KID_$_$: Indicator of child order

used: huiosehold grid and generated variable obnr (at least 1 answer in questions a212_-a224_)

no missing cases

<table>
<thead>
<tr>
<th>Child order</th>
<th>number of children</th>
<th>.d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6753</td>
<td>166</td>
</tr>
<tr>
<td>2</td>
<td>4349</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>1427</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>447</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

KID_Y$: Year of birth of child

used: ahg6y_ and a216y_

Filter: KID_Yx=.b if KID_x==0

KID_Y1 missing values: 72
KID_Y2 missing values: 57
KID_Y3 missing values: 31
KID_Y4 missing values: 12
KID_Y5 missing values: 4
KID_Y6 missing values: 2
KID_Y7 missing values: 1
KID_Y8 missing values: 1

TRANSFORMATIONS:
replace ahg3_2=1 if ARID==366 | ARID==31941 | ARID==33108 | ARID==40872
| ARID==44931 | ARID==44983
replace ahg3_2=.a if ARID==41848
replace ahg6y_4=.a if ARID==42455
replace ahg6y_3=.a if ARID==42762
replace a220y_3=.a if ARID==32580
replace a216y_1=.a if ARID==41724
replace a216y_2=.a if ARID==41724

Differences between 2 births <0.7 or >20 years, for your information only, no changes:
ARID: 133 10052 10169 10298 10390 10426 20381 20393 30176 30398 30543 30578
30583 30839 30902 31022 31668 31697 31871 32018 32431 32486 32684 32826 32831 32985
33124 33164 33400 33540 33569 40042 40182 40254 40359 40458 40491 40564 40729 40801
41034 41047 41151 41487 41559 41654 41656 41658 41662 41665 41992 42026 42026 42171
42322 42447 42804 43060 43246 43254 43284 43284 43697 43924 44082 44257 44577 45048
45125 45127 45136 45151 45236 45294 45352 45564

KID_M$: Month of birth of child
Filter: KID_Mx=.b if KID_x==0
KID_M1 missing values: 104
KID_M2 missing values: 81
KID_M3 missing values: 39
KID_M4 missing values: 14
KID_M5 missing values: 5
KID_M6 missing values: 4
KID_M7 missing values: 2
KID_M8 missing values: 1

IKID_M$: Month of birth of child used: KID_M$
and imputed months
according to manual page 4 (random)
Filter: IKID_M_x=.b if KID_x==0

KID_S$: Sex of child
Filter: KID_Sx=.b if KID_x==0
KID_S1 missing cases: 4
KID_S2 missing cases: 2
KID_S3 missing cases: 2
KID_S4 missing cases: 1
<table>
<thead>
<tr>
<th>Child order</th>
<th>number of children</th>
<th>male</th>
<th>female</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6753</td>
<td>3552</td>
<td>3197</td>
</tr>
<tr>
<td>2</td>
<td>4349</td>
<td>2225</td>
<td>2122</td>
</tr>
<tr>
<td>3</td>
<td>1427</td>
<td>734</td>
<td>691</td>
</tr>
<tr>
<td>4</td>
<td>447</td>
<td>237</td>
<td>209</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
<td>77</td>
<td>83</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

KID_D$: Death of child
used: a211b

Filter:
KID_Dx=.b if KID_x==0

No missing cases,

<table>
<thead>
<tr>
<th>Child order</th>
<th>number of children</th>
<th>death</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6753</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>4349</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>1427</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>447</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

KID_DY$: Year of death of child
used: a217y

Filter:
KID_DYx=.b if KID_x==0
KID_DYx=.b if KID_Dx==0

KID_DY3 missing values: 1

KID_DM$: Month of death of child
used: a217m

Filter:
KID_DMx=.b if KID_x==0
KID_DMx=.b if KID_Dx==0

KID_DM2 missing values: 3
KID_DM3 missing values: 1

IKID_DM$: Month of death of child
and imputed months
and imputed months according to manual page 4 (random)

Filter:
IKID_DMX=.b if KID_x==0
IKID_DMX=.b if KID_DX==0

KID_L$: Child left home
used: child in household or nonresident
Child’s parental home leave variable (KID_L) was not constructed perfectly as it was created in wide format instead of long. Namely the error occurred assuming that child’s order would perfectly match of those living outside the household. More specifically, if child from outside household changes its order (because of preceding foster/adopted or a step child) and in household grid is reported biological child of the same order, then this particular child will be coded as “0” (did not leave home). Furthermore some children living in the household were coded as left home.

Initially both KID_LY (year of child’s home leave) and KID_M (month of child’s home leave) variables were constructed correctly, however due to reason that KID_L variable serves as filter for both variables then these variables eventually were changed to either “.b” (does not apply) or “.a” (unknown).

Since June 2014 KID_L is constructed in a long format. In addition children which died were excluded from KID_L=1 and are now coded with special missing code .d and KID_LY and KID_LM for dead children is coded as .b.

DECISION:
Child did not leave home if child lives in household grid (code 2 or 3)
Child left home if is nonresident

Filter: KID_Lx=.b if KID_x==0

<table>
<thead>
<tr>
<th>Child order</th>
<th>number of children</th>
<th>Left home</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6753</td>
<td>3274</td>
</tr>
<tr>
<td>2</td>
<td>4349</td>
<td>2098</td>
</tr>
<tr>
<td>3</td>
<td>1427</td>
<td>731</td>
</tr>
<tr>
<td>4</td>
<td>447</td>
<td>252</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

KID_LY$: Year child left home

Filter: KID_Lyx=.b if KID_x==0

KID_LY1 missing cases: 348
KID_LY2 missing cases: 226
KID_LY3 missing cases: 98
KID_LY4 missing cases: 45
KID_LY5 missing cases: 19
KID_LY6 missing cases: 11
KID_LY7 missing cases: 4
KID_LY8 missing cases: 1
KID_LY9 missing cases: 1

KID_LM$: Month child left home

Filter: KID_LMx=.b if KID_x==0

KID_LM missing cases: 348
KID_LMx=.b if KID_Lx==0

15
KID_LM1 missing cases: 464
KID_LM2 missing cases: 306
KID_LM3 missing cases: 132
KID_LM4 missing cases: 53
KID_LM5 missing cases: 23
KID_LM6 missing cases: 13
KID_LM7 missing cases: 6
KID_LM8 missing cases: 2
KID_LM9 missing cases: 1

IKID_LM$: Month of death of child and imputed months according to manual page 4 (random variable)

Filter: IKID_LMx=.b if KID_x==0
 IKID_LMx=.b if KID_Lx==0

7. Part Education

INSCHOOL: Currently studying at the time of interview
Currently studying: 410

EDU_COU: Highest level of education, country specific
Missing values: 1

Harmonized: these country specific codes include:
* a 3-digit country prefix (276)
* a 1-digit survey code (German GGS=1) and
* a 2-digit country specific code for level of education (1-9)

ISCED_7: Highest level of education
Achieved according to ISCED 1997
Missing cases: 128

Harmonized:

<table>
<thead>
<tr>
<th>ISCED</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0+1</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>1196</td>
</tr>
<tr>
<td>3</td>
<td>5194</td>
</tr>
<tr>
<td>4</td>
<td>486</td>
</tr>
<tr>
<td>5</td>
<td>2293</td>
</tr>
<tr>
<td>6</td>
<td>213</td>
</tr>
</tbody>
</table>

EDU_3: Highest level of education ISCED
Collapsed into 3 categories

Definition: High: ISCED_7=5 or 6
Medium: ISCED_7=3 or 4
Low: ISCED_7=1 or 2
<table>
<thead>
<tr>
<th>Level</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>2506</td>
</tr>
<tr>
<td>medium</td>
<td>5680</td>
</tr>
<tr>
<td>low</td>
<td>1293</td>
</tr>
<tr>
<td>missing cases</td>
<td>128/410</td>
</tr>
</tbody>
</table>

EDU_Y: Year highest level of education achieved used: a150y

Missing cases: 1700

EDU_M: Month highest level of education achieved used: a150m

Missing cases: 1829

IEDU_Y: Year highest level education achieved and imputed year

Definition for imputation:
1) for missing cases: find the modal age of graduation (with help of graduation dates and birth dates) for every level of education and impute for year of graduation: birth date + modal age of graduation

After these imputations: 162 unknown years

IEDU_M: Month highest education achieved and imputed month

Definition:
1) if only month unknown/ year known: random variable according manual
2) if month and year unknown use month achieved in process above
3) for the last missing values random variable

After these imputations: 34 unknown years

Summary
IEDU_Y: for IEDU_Y 162 cases (.a) remain where the date of birth is unknown and for IEDU_M 34 unknown cases remain

8. Part Background variables (ethnicity, nationality etc.)

NATIVE: Born in country used: a105

Born in country: 8746
4 missing cases

ETHNOS: Ethnicity/nationality used: a110

Country specific variable (276+1+code)
Filter: German GGS: if f010500==2
Missing cases: 13

BIRTH_COU: Country of birth used: a106b

Country specific variable (276+1+code)

Filter: f010500==2
Missing cases: 43

MIG_Y: Year of migration used: a107y

Filter: f010500==2
Missing cases: 30

MIG_M: Month of migration used: a107m

Filter: f010500==2
Missing cases: 59

IMIG_M: Month of migration and imputed months used: MIG_M
according to manual page 4 (random)

9. Part Background variables (parental background)

SIS_NO: Number of sisters used: a5106a_s
Missing cases: 4424

BRO_NO: Number of brothers used: a5106a_b
Missing cases: 4129

SIBS: Total number of sibs used: SIS_NO/ BRO_NO
Missing cases: 1993

DECISION: If number of sisters is known and number of brothers is unknown or number of brothers is known and number of sisters is unknown: the number of known brothers or sisters is used
*if number of brothers and number of sisters is unknown the value remains missing

SIS_DIED: Number of sisters that died used: a5106a_s/a5106b_s
(sisters alive) and total number of sisters
(number of sisters respondent have ever had – number of alive sisters)
Missing cases: 4722

BRO_DIED: Number of brothers that died used: a5106a_b/a5106b_b
(brothers alive and total number of brothers)
Missing cases: 4609

ISCED_MO: Mother's highest level of education
\[used:a5115\]

<table>
<thead>
<tr>
<th>ISCED</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0+1</td>
<td>461</td>
</tr>
<tr>
<td>2</td>
<td>4065</td>
</tr>
<tr>
<td>3</td>
<td>4332</td>
</tr>
<tr>
<td>4</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>615</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>.b</td>
<td>5</td>
</tr>
<tr>
<td>missing</td>
<td>369</td>
</tr>
</tbody>
</table>

ISCED_FA: Father's highest level of education
\[used: a5513\]

<table>
<thead>
<tr>
<th>ISCED</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0+1</td>
<td>195</td>
</tr>
<tr>
<td>2</td>
<td>1479</td>
</tr>
<tr>
<td>3</td>
<td>5066</td>
</tr>
<tr>
<td>4</td>
<td>126</td>
</tr>
<tr>
<td>5</td>
<td>1716</td>
</tr>
<tr>
<td>6</td>
<td>237</td>
</tr>
<tr>
<td>.b</td>
<td>2</td>
</tr>
<tr>
<td>missing</td>
<td>1196</td>
</tr>
</tbody>
</table>

EDU3_MO: Highest level of education of mother
ISCED 1997, collapsed into 3 categories
\[used: ISCED_MO\]

Definition:
1 (high) if ISCED_MO=5 or 6
2 (medium) if ISCED_MO=3 or 4
3 (low) if ISCED_MO=1 or 2

<table>
<thead>
<tr>
<th>Level</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>675</td>
</tr>
<tr>
<td>medium</td>
<td>4442</td>
</tr>
<tr>
<td>low</td>
<td>4526</td>
</tr>
<tr>
<td>.b</td>
<td>5</td>
</tr>
<tr>
<td>missing cases</td>
<td>369</td>
</tr>
</tbody>
</table>

EDU3_FA: Highest level of education of father
ISCED 1997, collapsed into 3 categories
\[used: ISCED_FA\]

Definition:
1 (high) if ISCED_FA=5 or 6
2 (medium) if ISCED_FA=3 or 4
3 (low) if ISCED_FA=1 or 2

<table>
<thead>
<tr>
<th>Level</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>1953</td>
</tr>
<tr>
<td>medium</td>
<td>5192</td>
</tr>
<tr>
<td>low</td>
<td>1674</td>
</tr>
<tr>
<td>.b</td>
<td>2</td>
</tr>
<tr>
<td>missing cases</td>
<td>1196</td>
</tr>
</tbody>
</table>
WORK_MO: Mother`s occupation, when respondent was 15
Original country codes used: a5114
Missing cases: 509

WORK_FA: Father`s occupation, when respondent was 15
Original country codes used: a5112
WORK_FA missing cases: 1377

ISCO3_MO: Mother`s occupation, when respondent was 15
3 categories
Not included in survey

ISCO3_FA: Father`s occupation, when respondent was 15
3 categories
Not included in survey

NATIVE_MO: Mother born in country used: a513a
Mother born in country: 8417 cases / no:146
Missing cases: 132

NATIVE_FA: Father born in country used: a533a
Father born in country: 8131 cases/ no: 1525
Missing cases: 361

BIRTHCO_MO: Mother`s country of origin, country specific (276)
used: a513b

Filter: BIRTHCO_MO=.b if NATIVE_MO==1
missing cases: 190

BIRTHCO_FA: Father`s country of origin, country specific (276)
used: a533b

Filter: BIRTHCO_FA=.b if NATIVE_FA==1
missing cases: 418

PARDIVEV: Parents ever divorced/separated used: a550/ a552

Definition:
1) Parents ever divorced/separated (1 yes) if: there is code 1 (yes, biological parents ever broke up) in the used questions (646 cases)
2) No-stayed together if: respondent lives with both parents and they never broke up, or respondent lives without parent and they never separated (3334)
3) They never lived together (3) if: there is code 2 in the questions(73 cases)
4) Parental death (4) if: respondent lives with father/mother and the other part is dead or respondent lives without parents and one part is dead (105)
5) No, no other information available (5) if: code 3 (no, another information) and no death (1 cases)

Missing cases: 5858

PARDIV_15: Parents divorced before age of 15 used: a550/a551

and year of birth of respondent, years of separation, years of death

Definition: if events take place before age 15 of respondent

5858 missing cases

10. Part Background variables (region, size of location)

REGION: Country region at time of interview used: aregion

Country specific variable (276+1 +code)

No missing cases

SIZE: Size of place of residence at time of interview used: atype

country specific variable

ISIZE: Size of place of residence at time of interview leave blank

Standardized code

SIZE_15: Size of place of residence at age 15

country specific variable

Missing values: 1116 used: a5108_1

ISIZE_15: Size of place of residence at age 15

Standardized code
11. Part Other background variables

RELIGION: Religious affiliation at time of interview

Country specific variable (276+1 +code) used: a1101

Missing cases: 56

IRELIGION: Religious affiliation at time of interview

Standardized code

ADOPT: Number of adopted children of respondent

Used: ahg3_ (code5) and a213_ (code 2)

FOSTER: Number of foster children of respondent

Used: ahg3_ (code 6) and a213_ (code 3)

STEP: Number of stepchildren of respondent

Used: ahg3_ (code 4) and a229_

<table>
<thead>
<tr>
<th>Number of children</th>
<th>Adopt</th>
<th>Foster</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44</td>
<td>33</td>
<td>227</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>16</td>
<td>115</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

12. Part Weights

HHWGT: Household weight – not available in survey

PERSWGT: Personal weight – aweight

KISHWGT: Kishweight – not available in survey