Documentation of the Standardization of the Lithuanian Harmonized
 Histories Data File for birth, partnership histories, leaving home questions and background variables

HARMONIZED HISTORIES Lithuania (10036 respondents)

Karolin Kubisch
Max Planck Institute for Demographic Research Rostock

2012
Updated 12.02.2013
Updated 3.6.2014
Updated 27.10.2015

```
The following documentation gives a description of all input variables
and the consequent preparation of the output variables according to the
manual for the preparation of comparative fertility and union
histories.
All problem cases as well as the treatment of these cases are described
in detail.
Missing values are coded:
.a unknown
.b does not apply
.c unavailable in survey
In 2013 there was found a problem in the correct number of biological
children of child order 1. It was corrected.
June 2014: Corrections in the variables to leaving home histories of
children (KID_L, KID_LY, KID_LM)
October 2015: Please note that the partnership histories were modified
in October 2015. More precisely, we changed the sorting of the variable
UNION_$ (Union order). Prior to that date, we had sorted the unions by
start year of the union. This involved that unions which start dates
were missing were always listed as last unions. In the modified
version, we sorted the partnerships no longer by relying on the start
year of the union, but by relying on the order of the union as they
appear in the original dataset. For Lithuania it affects ca. 15 cases.
In connection with this modification, some smaller consistency changes
were made to the data. In particular, we recoded the following
constellations:
- Events (Union, Marriage, Separation, Divorce) before age 12 of respondent
- Event before age 12 of partner
- Negative difference between partnership date and marriage date
- Negative difference between separation date and union or marrige date and negative difference between divorce date and union or marriage date
```

```
    - Sucessive partnerships mar-mar[_n-1]<=0 or par-par[_n-1]<=0
    - Differences between separation date and next partnership date
    sep>par[_n+1]
All modifications made October 2015 are described in the updated
documentation.
```

Source: UN Data: GGS_Wave1_Lithuania_V.4.1.dta
Interview dates Lithuania GGS: April to December 2006

1. Part Basic Information

RESPID:	ID number to be assigned at merging
ARID:	ID number from raw data (original ID number)
	10036 respondents

MONTH_S: Month of survey april to december

IMONTH_S: Month of survey, including imputed dates

YEAR_S :	Year of survey 2006	used: ayear
SEX :	Sex of the respondent No missing cases Sex structure of the Lithuanian respondents: Male: 4999 and Female: 5037	used: ahg4_1
BORN_Y:	Year of birth of respondent 1926-1989	used: ahg6y_1
BORN_M :	Month of birth of respondent	used: ahg6m_1
IBORN_M:	Month of birth of respondent including imputed months Harmonized: random variable between 1-12	used: BORN_M

2. Part LEAVING HOME

LEAVE_1: Indicator of whether "left home"

```
used: GRID=1 go to a5117a
=0 go to a 5116m/y
a5117a=1 go to a5117bm/y
Definition:
*Respondent did not leave home (code 0) if: a parent lives in the
household (GRID=1) and respondent never lived separately from
parents (a5117a=2)
*Respondent left home (code 1) if: there is no parent in household
(GRID=0) or there is a parent in household (GRID=1) and respondent ever
left home (a5117a=1)
LEAVE_1 0: 927 / 1: 9106 UNK: 3
LEAVE_Y1: Year of first time leaving home used: a5116y and
    a5117by
Filter: LEAVE_Y1/LEAVE_M1 to .b if LEAVE_1==0 (927)
Missing cases: 690
LEAVE_M1: Month of first time leaving home used: a5116m and
    a5117.bm
Missing cases: .b 927 .a 696
ILEAVE_M1: Month of first time leaving home
    and imputed months: used: LEAVE_M1
Harmonized: random variables according to manual
```


3. Part UNIONS AND DISSOLUTION (\$=order of union)

TRANSFORMATIONS

replace $\mathrm{a} 301 \mathrm{y}=. \mathrm{a}$ if arid $==285$ | arid $==6284$ | arid $==9433$
replace a301y=1998 if arid==813
replace $a 302 b y=. a$ if arid $==1110 \mid$ arid $==6284 \mid$ arid $==285$
replace $a 301 \mathrm{y}=1986$ if arid==1351
replace $\mathrm{a} 301 \mathrm{~m}=. \mathrm{a}$ if arid $==7712 \mid$ arid $==8366 \mid$ arid $==9132$
replace $\mathrm{a} 301 \mathrm{y}=. \mathrm{a}$ if arid==9740
replace $a 302 b y=. a$ if arid==9740
replace a344y_1=.a if arid==3261 | arid==3681
replace a344y_1=1970 if arid==9475
replace a334m_1=.a if arid==349
replace a334y_1=.a if arid==349
replace a335a_1=.a if arid==349
replace a335m_1=. a if arid==349
replace a335y_1 =. a if arid==349
replace a336m_1=.a if arid==349
replace a336y_-1 =. a if arid==349
replace a338_1=.a if arid==349
replace a344y_2=.a if arid==9623
replace a334y_2=1998 if arid==581

```
replace a344y_1=2000 if arid==1494
replace a344y_1=1997 if arid==2563
replace a344y_1=.a if arid==3673 | arid==3681 | arid==4377 | arid==4461 | arid==5099 |
arid==5870 | arid==6608 | arid==1705 | arid==6993 | arid==7983 | arid==8132 | arid==8733 |
arid==9136 | arid==9479
replace a344m_1=.a if arid==4931 | arid==5366 | arid==5661 | arid==5842 | arid==6203 |
arid==6730 | arid==7770
replace a344m_2=.a if arid==6134 | arid==3518
replace a344m_3=.a if arid==4865
replace a334y_2=.a if arid==4827
replace a344y_2=.a if arid==4827
UNINUM: Total number of unions used: UNION_1 to _6
Syntax:
forvalues x=1/6 {
replace UNINUM=UNINUM+1 if UNION_`x'>0
    }
UNINUM:
0: 2057
1: 7245
2: 682
3: 40
4: 8
5: 3
6: 1
UNION_$: UNION order
For the chapters union /marriage and divorce/ and a part of partners
characteristics an reshaping program was used, which includes
partnership histories and questions to the current partner
Definition (Union_1 to UNION_x):
\an union exists if there is an answer in at least one of the
questions about the current partner ( a301m - a309) or in partnership
histories (a334m - a350)
UNION_1: 7979
UNION_2: 734
UNION_3: 52
UNION_4: 12
UNION_5: 4
UNION_6: 1
No missing cases
UNION_Y$: Year of start union
used: a301y and a334y
Filter: UNION_Yx=.b if UNION_x==0
UNION_Y1 missing values: 143
UNION_Y2 missing values: 15
UNION_Y3 missing values: 3
```

UNION_M\$: Month of start UNION
used: a301m and a334m

Filter: UNION_Mx=.b if UNION_x==0
UNION_M1 missing values: 185
UNION_M2 missing values: 29
UNION_M3 missing values: 1
UNION_M4 missing values: 1

IUNION_M\$: Month of start UNION
used: UNION_M\$ and imputed months
according to manual page 4 (random)
Filter: IUNION_Mx=.b if UNION_x==0

SEP_\$: Dissolution of UNION used: a343 (only histories)

Filter: SEP_x=.b if UNION_x==0
in case of current partner: no separation

Order of Union	Number of unions	number of separations	death of partner	UNK
1	7979	1486	1241	50
2	734	170	64	2
3	52	24	5	
4	12	5		
5	4	2	1	
6	1	1		

SEP_Y\$: Year of end of UNION
used: a344y (only histories)

Filter: SEP_Yx=.b if UNION_x==0
SEP_Yx=.b if SEP_x==0

SEP_Y1 missing values: 157
SEP_Y2 missing values: 12
SEP_Y3 missing values: 1

SEP_M\$: Month of end of UNION
used: a344m (histories only)

Filter: SEP_Mx=.b if UNION_x==0 SEP_Mx=.b if SEP_x==0

SEP_M1 missing values: 203
SEP_M2 missing values: 17
SEP_M3 missing values: 2

ISEP_M\$: Month of end of UNION used: SEP_M\$ and imputed months
according to manual page 4 (random)
Filter: ISEP_Mx=.b if UNION_x==0 ISEP_Mx=.b if SEP_x==0

4. Part MARRIAGE AND DIVORCE (\$=order of union)

```
MARR_$: Indicator of whether marriage took place
    and type of marriage used: a302a and a335a
Filter: MARR_x=.b if UNION_x==0
MARR_1 missing values: 49
MARR_2 missing values: 2
MARR_5 missing values: 1
\begin{tabular}{|l|l|l|}
\hline Order of Union & \begin{tabular}{l} 
Number of \\
unions
\end{tabular} & \begin{tabular}{l} 
number of \\
marriages
\end{tabular} \\
\hline 1 & 7979 & 7191 \\
\hline 2 & 734 & 409 \\
\hline 3 & 52 & 19 \\
\hline 4 & 12 & 1 \\
\hline 5 & 4 & \\
\hline 6 & 1 & \\
\hline
\end{tabular}
```

```
MARR_Y$: Year of marriage used: a302by and a335y
Filter: MARR_Yx=.b if UNION_x==0
    MARR_Yx=.b if MARR_x==0
MARR_Y1 missing values: 127
MARR_Y2 missing values: 13
MARR_Y3 missing values: 3
MARR_M$: Month of marriage
used: a302bm and a335m
Filter: MARR_Mx=.b if UNION_x==0
MARR_M1 missing values: 156
MARR_M2 missing values: 14
MARR_M3 missing values: 2
MARR_M5 missing values: 1
IMARR_M$: Month of marriage
                                    used: MARR_M$
                                    and imputed months
according to manual page 4 (random)
Filter: IMARR_Mx=.b if UNION_x==0
    IMARR_Mx=.b if MARR_x==0
DIV_$: Indicator of whether divorce occurred used: a349a, a343
    (only histories)
Filter: DIV_x=.b if UNION_x==0
    DIV_x=.b if MARR_x==0
```

DIV_x=.d if a343_x==2

DIV_1 missing values: 76
DIV_2 missing values: 2
DIV_5 missing values: 1

Order of Union	Number of unions	number of marriages	number of divorces
1	7979	7190	1077
2	734	409	70
3	52	20	3
4	12		
5	4		
6	1		

```
DIV_Y$: Year of divorce used: a349y
Filter: DIV_Yx=.b if UNION_x==0
    DIV_Yx=.b if MARR_x==0
    DIV_Yx=.b if DIV_X==0 or .d
DIV_Y1 missing values: 111
DIV_Y2 missing values: 6
DIV_Y5 missing values: 1
DIV_M$: Month of divorce used: a349m
Filter: DIV_Mx=.b if UNION_x==0
    DIV_Mx=.b if MARR_x==0
    DIV_Mx=.b if DIV_x==0 or .d
DIV_M1 missing values: 154
DIV_M2 missing values: 7
DIV_M5 missing values: 1
IDIV_M$: Month of divorce used: DIV_M$
    and imputed months
according to manual page 4 (random)
Filter: IDIV_Mx=.b if UNION_x==0
    IDIV_Mx=.b if MARR_x==0
    IDIV_Mx=.b if DIV_x==0 or .d
```


5. Part PARTNER`S CHARACTERISTICS (\$=order of union)

```
SEXP_$: Partner`s sex used: ahg4_1, ahg4_2
```

Filter: SEXP_x=.b if UNION_x==0

Partner	Number of unions	Number male	Number female
1	7979	4034	3945

2	734	375	359		
3	52	24	28		
4	12	4	8		
5	4	1	3		
6	1		1		YEARBIRP_S: Year of birth of partner
:---					
Filter: YEARBIRP_x=.b if UNION_x==0					
YEARBIRP_1 missing cases: 146					
YEARBIRP_2 missing cases: 12					
YEARBIRP_3 missing cases: 1					

MONBIRP_\$: Month of birth of partner used: ahg6m_2 and a336m
Filter: MONBIRP_x=.b if UNION_x==0
MONBIRP_1 missing cases: 216
MONBIRP_2 missing cases: 24
MONBIRP_2 missing cases: 2
IMONBIRP_\$: Month of birth of partner used: MONBIRP_\$ and imputed months
according to manual page 4 (random)
Filter: IMONBIRP_x=.b if UNION_x==0
NUMCHP_\$: Number of children of partner at start of union\$
for current partner:
a) children of partner (household members): relation of household member to respondent : code 4: stepchild: my current partners child not adopted by me \rightarrow ahg3_2 to ahg3_8
b) non-resident stepchildren: a226==1 and a231
c) for partnership histories: a338_1 to a338_6
also: year of start of union (a301y) and year of birth of stepchild (ahg6y_x and a230_x)

Problem: The question: When you started living together, how many children did your partner have? (a338)- exists only for partnership histories
-for current partnership it had to be created with help of the number of stepchildren, year of start of union and year of birth of stepchild

Definition: in the number of children of current partner are included: * all stepchildren of respondent living at the moment of interview in household grid and were born before the start of the union * all nonresident stepchildren at the time of interview - partners children born before partnership (year start union-birth year>0) * the number of partner's children at start of a union in partnership history (a338_1 to a338_6)

```
Filter: NUMCHP_$=.b if UNION_X==0
```

 NUMCHP_1: missing values: 89
 NUMCHP_2: missing values: 15
 NUMCHP_3: missing values: 2
 NUMCLIV_\$: Number of children of partner lived with respondent
 a341_1 - a341_6 not included in survey
 | Union | Number of unions | NUMCHP |
| :--- | :--- | :--- |
| 1 | 7979 | $1: 181$ |
| | | $2: 70$ |
| | | $3: 10$ |
| | $4: 1$ | |
| 2 | 734 | $1: 144$ |
| | | $2: 86$ |
| | | $3: 11$ |
| | | $4: 6$ |
| | | $5: 2$ |
| | 52 | $7: 1$ |
| 3 | | $1: 14$ |
| | | $2: 8$ |
| | | $3: 1$ |
| | 12 | $4: 1$ |
| 4 | | $1: 3$ |
| | | $2: 4$ |
| 5 | 1 | $2: 1$ |
| 6 | | |

Summary: The variable NUMCHP had to be created for the current partnership. The variable NUMCLIV is not included in dataset.

6. Part Birth histories (biological kids)

Changes because of problems in fertility histories: (logical problems, successive partnerships etc.)

```
replace a216y_1=1970 if arid==5596
For your information: Interval between two births <7 months or >20
years for arid numbers:
(no changes)
arid KID_Y1 KID_M1 KID_Y2 KID_M2 SEX BORN_Y
535 1983 November 1984 May Male 1959
896 1961 November 1962 May Female1938
1218 1971 April 1991 November Female1952
1432 1979 October 1980 February Female1957
1899 1964 May 1964 December Male 1943
2171 1987 November 1988 January Male 1952
2488 1984 December 1985 May Male 1965
2660 1975 April 1975 July Male 1932
```

2804	1995	November	1996	June	Male	1972
3955	1983	June	1984	February	Femal	e1959
4133	1971	September	1972	February	Male	1946
4386	1989	October	1989	November	Male	1965
4388	1981	May	1982	January	Femal	e1955
4691	1962	December	1963	February	Femal	e1938
5319	1974	December	1975	February	Male	1947
5627	1982	June	2002	August	Male	1959
5636	1982	September	2003	April	Femal	e1965
6179	1971	June	1972	February	Male	1933
6203	1981	July	2002	July Male	1956	
6453	1972	August	1973	March Male	1946	
6479	1981	August	1981	November	Femal	e1958
6816	1998	September	1999	February	Male	1960
7337	1992	December	1993	June	Male	1961
7534	1960	October	1961	March	Male	1935
7812	1985	August	1986	March	Femal	e1961
8048	1999	September	2000	February	Femal	e1976
8188	1949	October	1950	May	Femal	1926
8551	1961	April	1961	September	Femal	1934
8648	1972	February	1972	August	Male	1948
9132	1986	December	1987	January	Femal	e1963
9239	1981	November	1982	January	Male	1949
9560	1982	April	1982	June	Femal	1959
9708	1990	November	1991	June	Femal	e1965
arid	KID_Y	KID_M2	KID_Y	KID_M3	SEX	BORN_Y
447	1991	August	1991	December	Male	1968
1012	1971	September	1972	May	Male	1943
2507	2004	December	2005	May	Male	1983
3813	1971	December	1972	July	Femal	e1950
5197	1977	May	2003	June	Male	1955
9159	1986	March	1986	July	Femal	1965
9309	1979	July	1980	February	Male	1941
9425	1976	June	1976	August	Femal	e1951
10024	1979	January	1979	April	Male	1952
arid	KID_Y	3KID_M3	KID_Y	4KID_M4	SEX	BORN_Y
5258	1993	November	1994	June	Male	1964
6630	1962	August	1984	July	Male	1928
6920	1972	February	1972	August	Male	1947
8430	1981	February	1981	April	Male	1954
arid	KID_Y	4KID_M4	KID_Y	KID_M5	SEX	BORN_Y
6920	1972	August	1973	January	Male	1947
arid	KID_Y	5KID_M5	KID_Y	6KID_M6	SEX	BORN_Y
3429	1969	December	1970	May	Femal	e 1936
6901	1968	March	1968	September	Femal	e 1936
arid	KID_Y	6KID_M6	KID_Y	7KID_M7	SEX	BORN_Y
2159	1998	August	1999	February	Femal	e 1966

For the chapter "Birth histories" a reshaping program was used, which includes biological children in household and questions to the nonresident biological children

To create the number of biological children (KID_1 to KID_x) the following definition was applied:
\rightarrow a biological child exists in household if there is code 2 or 3 (biological child by current or previous partner) in the relationship to respondent (ahg3_)
\rightarrow a nonresident biological child exists if a213_==1
KID_\$: Indicator of child order
used: ahg1_ and generated variable obnr (at least 1 answer in questions a212 to a224)
no missing cases

Child order	number of children
1	7079
2	4373
3	1102
4	281
5	105
6	40
7	19
8	8
9	6
10	1

KID_Y\$: Year of birth of child
used: ahg6y_ and a216y
Filter: KID_Yx=.b if KID_x==0
KID_Y1 missing cases: 39
KID_Y2 missing cases: 27
KID_Y3 missing cases: 12
KID_Y4 missing cases: 4
KID_Y5 missing cases: 4
KID_Y6 missing cases: 1
KID_Y8 missing cases: 1
KID_Y9 missing cases: 1
KID_M\$: Month of birth of child
used: ahg6m and a216m

Filter: KID_Mx=.b if KID_x==0
KID_M1 missing cases: 83
KID_M2 missing cases: 57
KID_M3 missing cases: 25
KID_M4 missing cases: 10
KID_M5 missing cases: 7
KID_M6 missing cases: 3
KID_M8 missing cases: 1
KID_M9 missing cases: 1

IKID_M\$: Month of birth of child
used: KID_M\$ and imputed months
according to manual page 4 (random)
Filter: IKID_M_x=.b if KID_x==0

KID_S\$: Sex of child used: ahg4 and a212
Filter: KID_Sx=.b if KID_x==0
KID_S1 missing cases: 5
KID_S2 missing cases: 2
KID_S3 missing cases: 1

Child order	number of children	male	female
1	7079	3482	3592
2	4373	2153	2218
3	1102	549	552
4	281	127	154
5	105	54	51
6	40	23	17
7	19	6	13
8	8	2	6
9	6	1	5
10	1		1

KID_D\$: Death of child
used: a211b
Filter: KID_Dx=.b if KID_x==0
No missing cases

Child order	number of children	death
1	7079	159
2	4373	95
3	1102	40
4	281	14
5	105	8
6	40	3
7	19	
8	8	1
9	6	1
10	1	

KID_DY\$: Year of death of child
used: a217y

Filter: KID_DYx=.b if KID_x==0
KID_DYx=.b if KID_Dx==0
KID_DY1 missing values: 4
KID_DY2 missing values: 2
KID_DY3 missing values: 1

KID_DM\$: Month of death of child
used: a217m

Filter: KID_DMx=.b if KID_x==0
KID_DMx=.b if KID_Dx==0

KID_DM1 missing values: 6
KID_DM2 missing values: 4
KID_DM3 missing values: 2
KID_DM4 missing values: 1
KID_DM5 missing value: 1
IKID_DM\$: Month of death of child
used: KID_DM
and imputed months
KID_L\$: Child left home
used: a220y/a220m
Child's parental home leave variable (KID_L) was not constructed perfectly as it was created in wide format instead of long. Namely the error occurred assuming that child's order would perfectly match of those living outside the household. More specifically, if child from outside household changes its order (because of preceding foster/adopted or a step child) and in household grid is reported biological child of the same order, then this particular child will be coded as " 0 " (did not leave home). Furthermore some children living in the household were coded as left home.
Initially both KID_LY (year of child's home leave) and KID_M (month of child's home leave) variables were constructed correctly, however due to reason that KID_L variable serves as filter for both variables then these variables eventually were changed to either ".b" (does not apply) or ".a " (unknown).
Since june 2014 KID_L is constructed in a long format. In addition children which died were excluded from KID_L=1 and are now coded with special missing code .d and KID_LY and KID_LM for dead children is coded as .b.

Definition: Child left home if a220m_x or a220y_x!=.
Filter: KID_Lx=.b if KID_x==0

Child order	number of children	Left home
1	7079	3476
2	4373	2116
3	1102	544
4	281	145
5	105	50
6	40	22
7	19	10
8	8	2
9	6	1
10	1	

KID_LY\$: Year child left home

used: a220y

```
Filter: KID_LYx=.b if KID_x==0
    KID_LYx=.b if KID_Lx==0
Missing cases KID_LY_1: 463
Missing cases KID_LY_2: 285
Missing cases KID_LY_3: 97
Missing cases KID_LY_4: 37
Missing cases KID_LY_5: 12
Missing cases KID_LY_6: 4
```

```
Missing cases KID_LY_7: 3
```

KID_LM\$: Month child left home used: a220m
Filter: KID_LMx=.b if KID_x==0
KID_LMx=.b if KID_Lx==0
Missing cases KID_LM_1: 608
Missing cases KID_LM_2: 396
Missing cases KID_LM_3: 127
Missing cases KID_LM_4: 45
Missing cases KID_LM_5: 14
Missing cases KID_LM_6: 6
Missing cases KID_LM_7: 3

IKID_LM\$: Month of death of child
used: KID_LM and imputed months
according to manual page 4 (random variable)
Filter: IKID_LMx=.b if KID_x==0
IKID_LMx=.b if KID_Lx==0

7. Part Education

INSCHOOL: Currently studying at the time of interview used: a151

Currently studying: 1245
EDU_COU: Highest level of education, country specific used: 148
These data exist in the harmonized dataset in an ISCED97 coded form.
These country specific codes include:

* a 3-digit country prefix(440)
* a 1-digit survey code (Lithuania GGS=1) and
* a 2 -digit country specific code for level of education (0-6 levels of education)

ISCED_7: Highest level of education
Achieved according to ISCED 1997
used: EDU_COU
Harmonized:

ISCED	Number
1	724
2	1616
3	3430
4	2163
5	2089
6	14

EDU_3: Highest level of education ISCED

```
Definition: High: ISCED_7=6, 5
    Medium: ISCED_7=4, 3
    Low: ISCED_7=2, 1
\begin{tabular}{|l|l|}
\hline Level & Number \\
\hline High & 2103 \\
\hline medium & 5593 \\
\hline low & 2340 \\
\hline
\end{tabular}
EDU_Y: Year highest level of education achieved used: a150y
Missing values: .a 3532
EDU_M: Month highest level of education achieved
Missing values: .a 3555
IEDU_Y: Year highest level education achieved and imputed year
IMPUTATION of missing years by level of Education
Cind the modal age of education with help of birth year and graduation
year. Year of graduation for missing cases then is calculated by adding
modal age of graduation to the birth date.
Missing values: .a 201
```

IEDU_M: Month highest education achieved and imputed month

Missing values: .a 201

Summary:
The EDU_COU data exist in a country specific ISCED97 form.

8. Part Background variables (ethnicity, nationality etc.)

NATIVE: Born in country	used: al05
Born in country: 9560	
Born elsewhere: 476	used: allo
ETHNOS: Ethnicity/nationality	
Missing value: 1	used: al06b
BIRTH_COU: Country of birth	
Country specific variable $(440+1$ +code)	
Filter: BIRTH_COU=.b if al05==1	

```
MIG_Y: Year of migration
    used: a107y
Missing value: 20
Filter: MIG_Y=.b if a105==1
MIG_M: Month of migration used: 107m
Missing value: 28
Filter: MIG_M=.b if a105==1
IMIG_M: Month of migration and imputed months used: MIG_M
according to manual page 4 (random)
```


9. Part Background variables (parental background)

```
SIS_NO: Number of sisters used: a5106a_s
```

SIS_NO: Number of sisters used: a5106a_s
0 - 11 sisters
0 - 11 sisters
BRO_NO: Number of brothers used: a5106a_b
BRO_NO: Number of brothers used: a5106a_b
0 - 10 brothers
missing cases: 108
SIBS: Total number of sibs used: a5106a_s and a5106a_b
0-15 sibs
DECISION: If number of sisters is known and number of brothers is
unknown or number of brothers is known and number of sisters is
unknown: the number of known brothers or sisters is used
if number of brothers and number of sisters is unknown the value
remains (missing .a)
SIS_DIED: Number of sisters that died
used: a5106a_s and a5106b_s
(number of sisters respondent have ever had - number of alive sisters)
Filter: SIS_DIED=.b if a5106a_s==0
Missing cases: 54
BRO_DIED: Number of brothers that died
used: a5106a_b and a5106b_b
Filter: BRO_DIED=.b if a5106a_b==0
Missing cases: 51

```
\begin{tabular}{|l|l|}
\hline ISCED & Number \\
\hline 1 & 3437 \\
\hline 2 & 1599 \\
\hline 3 & 1350 \\
\hline 4 & 1429 \\
\hline 5 & 854 \\
\hline 6 & 7 \\
\hline.\(a\) & 1360 \\
\hline
\end{tabular}

ISCED_FA: Father`s highest level of education used: a5113
\begin{tabular}{|l|l|}
\hline 1 & 2815 \\
\hline 2 & 1759 \\
\hline 3 & 1130 \\
\hline 4 & 924 \\
\hline 5 & 700 \\
\hline 6 & 10 \\
\hline.\(a\) & 2698 \\
\hline
\end{tabular}
```

EDU3_MO: Highest level of education of mother
ISCED 1997, collapsed into 3 categories used: ISCED_MO
Definition: 1 (high) if ISCED_MO=5+6
2 (medium) if ISCED_MO=3+4
3 (low) if ISCED_MO=1+2

```
\begin{tabular}{|l|l|}
\hline Level & Number \\
\hline High & 861 \\
\hline medium & 2779 \\
\hline low & 5036 \\
\hline. a & 1360 \\
\hline
\end{tabular}

EDU3_FA: Highest level of education of father ISCED 1997, collapsed into 3 categories used: ISCED_FA

Definition: 1 (high) if ISCED_FA=5+6
2 (medium) if ISCED_FA=3+4
3 (low) if ISCED_FA=1+2
\begin{tabular}{|l|l|}
\hline Level & Number \\
\hline High & 710 \\
\hline medium & 2054 \\
\hline low & 4574 \\
\hline. a & 2698 \\
\hline
\end{tabular}

WORK_MO: Mother`s occupation, when respondent was 15 Country codes
used: 5114

Missing cases: 1049
```

WORK_FA: Father`s occupation, when respondent was 15 Country codes used: 5112 Missing cases: 2318 ISCO3_MO: Mother`s occupation, when respondent was 15
3 categories used: WORK_MO
Missing cases: 1049
ISCO3_FA: Father`s occupation, when respondent was 15 3 categories used: WORK_FA Missing cases: 2318 NATIVE_MO: Mother born in country used: 513a NOT INCLUDED IN SURVEY NATIVE_FA: Father born in country used: 533a NOT INCLUDED IN SURVEY BIRTHCO_MO: Mother`s country of origin used: a513b
NOT INCLUDED IN SURVEY
BIRTHCO_FA: Father`s country of origin used: a533b
NOT INCLUDED IN SURVEY
PARDIVEV: Parents ever divorced/separated used: a550/a552
Missing values: 249
PARDIV_15: Parents divorced before age of 15 used: a550/a552
a551/ a511/ ahg6y_1
missing values: 304

```

\section*{Background variables (region, size of location)}
```

REGION: Country region at time of interview

```
REGION: Country region at time of interview
Country specific variable (440+1 +code) used: aregion
Country specific variable (440+1 +code) used: aregion
No missing cases
No missing cases
SIZE: Size of place of residence at time of interview used: atype
```

SIZE: Size of place of residence at time of interview used: atype

```
```

Country specific variable (440+1+code)
No missing cases
ISIZE: Size of place of residence at time
of interview
Standardized code
SIZE_15: Size of place of residence at age 15 used: a5108
Country specific variable (440+1+code)
missing cases: 153
ISIZE_15: Size of place of residence at age 15
Standardized code

```

\section*{11. Part Other background variables}

RELIGION: Religious affiliation at time of interview
Country specific variable (440+1+code)
Missing values: 59

IRELIGION: Religious affiliation at time of interview
Standardized code

ADOPT: Number of adopted children of respondent used: ahg3_2-ahg3_5, ahg3_8 (code5) and a213 (code 2)

FOSTER: Number of foster children of respondent Used: ahg3_2-ahg3_6 (code 6) and a213 (code 3)

STEP: Number of stepchildren of respondent Used: ahg3_2-ahg3_8 (code 4) and a226/ a229
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Number of \\
children
\end{tabular} & Adopt & Foster & Step \\
\hline 1 & 27 & 35 & 206 \\
\hline 2 & 5 & 5 & 92 \\
\hline 3 & & 4 & 14 \\
\hline 4 & & 1 & 2 \\
\hline 5 & & & 3 \\
\hline 6 & & & \\
\hline 7 & & & \\
\hline 8 & & & \\
\hline
\end{tabular}

\section*{12. Part Weights}

HHWGT: Household weight - not available in survey

PERSWGT: Personal weight - aweight

KISHWGT: Kishweight - not available in survey```

